Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Vaccines (Basel) ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543944

RESUMEN

Immunization with various Leishmania species lacking centrin induces robust immunity against a homologous and heterologous virulent challenge, making centrin mutants a putative candidate for a leishmaniasis vaccine. Centrin is a calcium-binding cytoskeletal protein involved in centrosome duplication in higher eukaryotes and Leishmania spp. lacking centrin are unable to replicate in vivo and are non-pathogenic. We developed a centrin-deficient Leishmania braziliensis (LbCen-/-) cell line and confirmed its impaired survival following phagocytosis by macrophages. Upon experimental inoculation into BALB/c mice, LbCen-/- failed to induce lesions and parasites were rapidly eliminated. The immune response following inoculation with LbCen-/- was characterized by a mixed IFN-γ, IL-4, and IL-10 response and did not confer protection against L. braziliensis infection, distinct from L. major, L. donovani, and L mexicana centrin-deficient mutants. A prime-boost strategy also did not lead to a protective immune response against homologous challenge. On the contrary, immunization with centrin-deficient L. donovani (LdonCen-/-) cross-protected against L. braziliensis challenge, illustrating the ability of LdonCen-/- to induce the Th1-dominant protective immunity needed for leishmaniasis control. In conclusion, while centrin deficiency in L. braziliensis causes attenuation of virulence, and disrupts the ability to cause disease, it fails to stimulate a protective immune response.

2.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37904953

RESUMEN

Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8 T cell responses mediate disease. While these responses originate in the lymph node, we find that expression of the cytolytic effector molecule granzyme B is restricted to lesional CD8 T cells in Leishmania - infected mice, suggesting that local cues within inflamed skin induce cytolytic function. Expression of Blimp-1 ( Prdm1 ), a transcription factor necessary for cytolytic CD8 T cell differentiation, is driven by hypoxia within the inflamed skin. Hypoxia is further enhanced by the recruitment of neutrophils that consume oxygen to produce reactive oxygen species, ultimately increasing granzyme B expression in CD8 T cells. Importantly, lesions from cutaneous leishmaniasis patients exhibit hypoxia transcription signatures that correlate with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8 T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as other inflammatory skin diseases where cytolytic CD8 T cells contribute to pathogenesis.

3.
Open Forum Infect Dis ; 10(8): ofad387, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37564745

RESUMEN

This case-control study compared the clinical profile, parasite load, polymerase chain reaction positivity, and response to therapy in patients with recurrent cutaneous leishmaniasis (RCL) with primary cutaneous leishmaniasis (CL). The RCL patients had milder diseases with lower parasite loads, a lower number of lesions, and more self-healing diseases than primary CL patients.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36818551

RESUMEN

Introduction: Leishmaniasis is a parasitic disease that affects more than 1 million people worldwide annually, predominantly in resource-limited settings. The challenge in compound development is to exhibit potent activity against the intracellular stage of the parasite (the stage present in the mammalian host) without harming the infected host cells. We have identified a compound series (pyrazolopyrrolidinones) active against the intracellular parasites of Leishmania donovani and L. major; the causative agents of visceral and cutaneous leishmaniasis in the Old World, respectively. Methods: In this study, we performed medicinal chemistry on a newly discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties. Results and discussion: Members of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 µM without harming the host macrophage up to 10.0 µM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 µM) while being cytotoxic to the host cell at 5.0 µM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK's criteria to be defined as a potential lead drug series for leishmaniasis. Conclusion: Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.

6.
Microbiol Resour Announc ; 11(12): e0024522, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36318039

RESUMEN

The draft genome of the parasite Leishmania braziliensis strain BA788, which was isolated from a patient from Bahia state, Brazil, was sequenced using Illumina paired-end technology. The assembled genome is 33.5 Mb long and contains 7,603 genes. This genome will contribute to studies aimed at understanding the pathogenesis caused by this parasite strain.

7.
Front Cell Infect Microbiol ; 12: 884237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909958

RESUMEN

Patients with cutaneous leishmaniasis (CL) due to Leishmania braziliensis infection have an exacerbated inflammatory response associated with tissue damage and ulcer development. An increase in the rate of patients who fail therapy with pentavalent antimony has been documented. An adjuvant therapy with an anti-inflammatory drug with the potential of Leishmania killing would benefit CL patients. The aim of the present study was to investigate the contribution of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation by pioglitazone in the regulation of the inflammatory response and L. braziliensis killing by monocytes. Pioglitazone is an oral drug used in the treatment of diabetes, and its main mechanism of action is through the activation of PPAR-γ, which is expressed in many cell types of the immune response. We found that activation of PPAR-γ by pioglitazone decreases the inflammatory response in CL patients without affecting L. braziliensis killing by monocytes. Our data suggest that pioglitazone may serve as an adjunctive treatment for CL caused by L. braziliensis.


Asunto(s)
Leishmania braziliensis , Leishmaniasis Cutánea , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico , Monocitos , PPAR gamma/uso terapéutico , Pioglitazona/farmacología , Pioglitazona/uso terapéutico
8.
Emerg Microbes Infect ; 11(1): 2147-2159, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36039908

RESUMEN

American tegumentary leishmaniasis (TL) caused by Leishmania braziliensis is characterized by a spectrum of clinical presentations, ranging from localized cutaneous ulcers (CL), mucosal (ML), or disseminated (DL) disease, to a subclinical (SC) asymptomatic form. Current diagnosis based on parasite culture and/or microscopy lacks sensitivity and specificity. Previous studies showed that patients with CL and ML have very high levels of Leishmania-specific anti-α-Gal antibodies. However, the native parasite α-Gal glycotope(s) is(are) still elusive, thus they have not yet been explored for a more accurate TL diagnosis. Using a chemiluminescent immunoassay, we evaluated the seroreactivity of TL patients across its clinical spectrum, and of endemic (EC) and nonendemic healthy controls (NEC) against three synthetic neoglycoproteins (NGP29b, NGP30b, and NGP28b), respectively comprising the L. major-derived type-2 glycoinositolphospholipid (GIPL)-1 (Galfß1,3Manα), GIPL-2 (Galα1,3Galfß1,3Manα), and GIPL-3 (Galα1,6Galα1,3Galfß) glycotopes. Contrary to NGP29b and NGP30b, NGP28b exhibited high sensitivity and specificity to a CL serum pool. More importantly, NGP28b reacted strongly and specifically with individual sera from distinct clinical forms of TL, especially with SC sera, with 94% sensitivity and 97% specificity, by post-two-graph receiver-operating characteristic curve analysis. Contrary to NGP29b, NGP28b showed low cross-reactivity with Chagas disease and control (NEC/EC) sera. Additionally, seroreactivity of CL patients against NGP28b was significantly decreased after successful chemotherapy, indicating that L. braziliensis-specific anti-α-Gal antibodies may serve as an early biomarker of cure in CL. Our data also points towards the applicability of L. major type-2 GIPL-3-derived Galα1,6Galα1,3Galfß glycotope for the serological diagnosis of American TL, particularly of the subclinical form.


Asunto(s)
Leishmania braziliensis , Leishmaniasis Cutánea , Biomarcadores , Glicoproteínas , Humanos , Pruebas Serológicas
9.
Clin Infect Dis ; 75(10): 1754-1762, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35385578

RESUMEN

BACKGROUND: We have previously shown that seropositivity to rLinB-13, a salivary protein from Lutzomyia intermedia, predicted sand fly exposure and was associated with increased risk of developing cutaneous leishmaniasis (CL). METHODS: Here, we investigated the cellular immune response to saliva from Lu. intermedia, using rLinB-13 as a surrogate antigen in naturally exposed individuals presenting positive serology to LinB-13. We also investigated the response to rLinB-13 in leishmaniasis patients, displaying active ulcers and positive PCR for Leishmania braziliensis. RESULTS: Peripheral blood mononuclear cells (PBMCs) stimulated in vitro with rLinB-13 secreted elevated levels of interleukin-10 (IL-10), IL-4, IL-1ß, IL-1α, IL-6, and chemokines (CCL3, CCL4, CCL5, and CXCL5). CL and disseminated leishmaniasis (DL) patients displayed a significantly higher immunoglobulin G (IgG) response to rLinB-13 compared with healthy subjects, and anti-rLinB-13 IgG was positively correlated with the number of lesions in DL patients. Positive serology to rLinB-13 was also associated with chemotherapy failure. PBMCs from DL patients stimulated with rLINB-13 secreted significantly higher levels of IL-10 and IL-1ß compared with CL individuals. CONCLUSIONS: In this study, we observed an association between humoral and cellular immune response to the sand fly salivary protein rLinB-13 and disease severity in tegumentary leishmaniasis. This study brings evidence that immunity to rLinB-13 influences disease outcome in L. braziliensis infection and results indicate that positive serology to rLinB-13 IgG can be used as a marker of DL, an emerging and severe form of disease caused by L. braziliensis.


Asunto(s)
Leishmania braziliensis , Leishmaniasis Cutánea , Phlebotomus , Psychodidae , Animales , Interleucina-10/metabolismo , Leucocitos Mononucleares , Proteínas y Péptidos Salivales , Inmunidad Celular , Inmunoglobulina G , Índice de Severidad de la Enfermedad
10.
Acta Trop ; 225: 106192, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34662548

RESUMEN

The treatment of cutaneous leishmaniasis (CL) in Brazil using pentavalent antimony (Sbv) is associated with a high failure rate and long time to heal. Moreover, standard Sbv treatment cures only 50-60% of the cases. In this pilot clinical trial, we evaluated the topical use of bacterial cellulose (BC) bio-curatives + Sbv in the treatment of CL caused by L. braziliensis, in Bahia, Brazil. A total of 20 patients were randomized in two groups assigned to receive either parenteral Sbv alone or parenteral Sbv plus topically applied BC bio-curatives. CL patients treated with Sbv + topical BC bio-curatives had a significantly higher cure rate at 60 days post initiation of treatment compared to CL patients treated with Sbv alone (P=0.01). At day 90 post initiation of treatment, cure rate was similar in the two groups as was overall healing time. Adverse effects or local reactions to topical BC application were not observed. This pilot trial shows that the potential use of a combined therapy consisting of topical BC bio-curatives and parenteral Sbv in favoring healing of CL lesions caused by L. braziliensis, at an early time point.


Asunto(s)
Antiprotozoarios , Leishmania braziliensis , Leishmaniasis Cutánea , Administración Tópica , Antiprotozoarios/uso terapéutico , Celulosa/uso terapéutico , Quimioterapia Combinada , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico
11.
Viruses ; 13(5)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919314

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Brasil/epidemiología , Genoma Viral , Humanos , Epidemiología Molecular , Unión Proteica , SARS-CoV-2/aislamiento & purificación
13.
Front Cell Infect Microbiol ; 11: 790418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35252020

RESUMEN

Leishmania braziliensis is the main causative agent of Tegumentary Leishmaniasis in the Americas. However, difficulties related to genome manipulation, experimental infection, and parasite growth have so far limited studies with this species. CRISPR-Cas9-based technology has made genome editing more accessible, and here we have successfully employed the LeishGEdit approach to attenuate L. braziliensis. We generated a transgenic cell line expressing Cas9 and T7 RNA polymerase, which was employed for the targeted deletion of centrin, a calcium-binding cytoskeletal protein involved in the centrosome duplication in eukaryotes. Centrin-deficient Leishmania exhibit growth arrest at the amastigote stage. Whole-genome sequencing of centrin-deficient L. braziliensis (LbCen-/- ) did not indicate the presence of off-target mutations. In vitro, the growth rates of LbCen-/- and wild-type promastigotes were similar, but axenic and intracellular LbCen-/- amastigotes showed a multinucleated phenotype with impaired survival following macrophage infection. Upon inoculation into BALB/c mice, LbCen-/- were detected at an early time point but failed to induce lesion formation, contrary to control animals, infected with wild-type L. braziliensis. A significantly lower parasite burden was also observed in mice inoculated with LbCen-/- , differently from control mice. Given that centrin-deficient Leishmania sp. have become candidates for vaccine development, we propose that LbCen-/- can be further explored for the purposes of immunoprophylaxis against American Tegumentary Leishmaniasis.


Asunto(s)
Leishmania braziliensis , Leishmania , Leishmaniasis Cutánea , Animales , Sistemas CRISPR-Cas , Leishmania braziliensis/genética , Leishmaniasis Cutánea/parasitología , Ratones , Ratones Endogámicos BALB C , Combinación Trimetoprim y Sulfametoxazol
14.
Cell Rep ; 33(11): 108513, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326783

RESUMEN

The long pentraxin 3 (PTX3) plays a critical role in inflammation, tissue repair, and wound healing. Here, we show that PTX3 regulates disease pathogenesis in cutaneous leishmaniasis (CL). PTX3 expression increases in skin lesions in patients and mice during CL, with higher expression correlating with severe disease. PTX3-deficient (PTX3-/-) mice are highly resistant to L. major and L. braziliensis infections. This enhanced resistance is associated with increases in Th17 and IL-17A responses. The neutralization of IL-17A abolishes this enhanced resistance, while rPTX3 treatment results in decrease in Th17 and IL-17A responses and increases susceptibility. PTX3-/- CD4+ T cells display increased differentiation to Th17 and expression of Th17-specific transcription factors. The addition of rPTX3 suppresses the expression of Th17 transcription factors, Th17 differentiation, and IL-17A production by CD4+ T cells from PTX3-/- mice. Collectively, our results show that PTX3 contributes to the pathogenesis of CL by negatively regulating Th17 and IL-17A responses.


Asunto(s)
Proteína C-Reactiva/inmunología , Linfocitos T CD4-Positivos/inmunología , Leishmaniasis Cutánea/inmunología , Proteínas del Tejido Nervioso/inmunología , Componente Amiloide P Sérico/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Proteínas de Fase Aguda/inmunología , Animales , Femenino , Humanos , Leishmaniasis Cutánea/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
15.
Sci Rep ; 10(1): 17065, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051524

RESUMEN

Photodynamic inactivation of Leishmania has been shown to render them non-viable, but retain their immunological activities. Installation of dual photodynamic mechanisms ensures complete inactivation of species in the Leishmania subgenus, raising the prospect of their safe and effective application as whole-cell vaccines against leishmaniasis. Here, we report the successful extension of this approach to L. braziliensis in the Viannia subgenus, viz. genetic engineering of promastigotes for cytosolic accumulation of UV-sensitive uroporphyrin (URO) and their loading with red light excitable phthalocyanines (PC) that was cationized by chemical engineering. The transgenic strategy used previously produced L. braziliensis transfectants, which gave the same phenotype of aminolevulinate (ALA)-inducible uroporphyria as found in Leishmania subgenus, indicative of pre-subgenus evolutionary origin for similar genetic deficiencies in porphyrin/heme biosynthesis. In the present study, 12 independent clones were obtained and were invariably ALA-responsive, albeit to different extent for uroporphyrinogenesis and UV-inactivation. In a separate study, L. braziliensis was also found, like other Leishmania spp., to take up diamino-PC (PC2) for red light inactivation. In vitro interactions of a highly uroporphyrinogenic clone with primary macrophages were examined with the intervention of URO/PC2-medated double-photodynamic inactivation to ascertain its complete loss of viability. Doubly sensitized L. braziliensis transfectants were photo-inactivated before (Strategy #1) or after (Strategy #2) loading of macrophages. In both cases, macrophages were found to take up L. braziliensis and degrade them rapidly in contrast to live Leishmania infection. The effector functions of macrophages became upregulated following their loading with L. braziliensis photodynamically inactivated by both strategies, including CD86 expression, and IL6 and NO production. This was in contrast to the immunosuppressive infection of macrophages with live parasites, marked by IL10 production. The results provide evidence that photodynamically inactivated L. braziliensis are susceptible to the degradative pathway of macrophages with upregulation of immunity relevant cytokine and co-stimulatory markers. The relative merits of the two loading strategies with reference to previous experimental vaccination were discussed in light of the present findings with L. braziliensis.


Asunto(s)
Indoles/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania braziliensis/efectos de la radiación , Macrófagos/inmunología , Macrófagos/parasitología , Fármacos Fotosensibilizantes/farmacología , Uroporfirinas/farmacología , Ácido Aminolevulínico/farmacología , Animales , Animales Modificados Genéticamente , Femenino , Humanos , Inmunidad Innata , Técnicas In Vitro , Isoindoles , Leishmania braziliensis/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/prevención & control , Ratones , Ratones Endogámicos BALB C , Vacunas Antiprotozoos/inmunología , Rayos Ultravioleta
16.
J Enzyme Inhib Med Chem ; 35(1): 1345-1358, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32588679

RESUMEN

Trypanothione synthetase (TryS) produces N1,N8-bis(glutathionyl)spermidine (or trypanothione) at the expense of ATP. Trypanothione is a metabolite unique and essential for survival and drug-resistance of trypanosomatid parasites. In this study, we report the mechanistic and biological characterisation of optimised N5-substituted paullone analogues with anti-TryS activity. Several of the new derivatives retained submicromolar IC50 against leishmanial TryS. The binding mode to TryS of the most potent paullones has been revealed by means of kinetic, biophysical and molecular modelling approaches. A subset of analogues showed an improved potency (EC50 0.5-10 µM) and selectivity (20-35) against the clinically relevant stage of Leishmania braziliensis (mucocutaneous leishmaniasis) and L. infantum (visceral leishmaniasis). For a selected derivative, the mode of action involved intracellular depletion of trypanothione. Our findings shed light on the molecular interaction of TryS with rationally designed inhibitors and disclose a new set of compounds with on-target activity against different Leishmania species.


Asunto(s)
Benzazepinas/química , Glutatión/análogos & derivados , Leishmania/metabolismo , Espermidina/análogos & derivados , Animales , Glutatión/biosíntesis , Espermidina/biosíntesis
18.
Vaccine ; 38(6): 1436-1443, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31839468

RESUMEN

Pathogenic bacteria, such as Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae and Moraxella catarrhalis, are important vaccine targets. The 10-valent pneumococcal conjugate vaccine (PCV10) acts on 10 differents S. pneumoniae serovars. However, this vaccine could also act on other bacteria genera, leading to dysbiosis. Moreover, the vaccination has also been associated with imbalances in the ratio between commensal and potentially pathogenic bacteria. Despite the wealth of studies assessing the influence of the microbiome on vaccine effects, how vaccination can influence the microbiome remains poorly understood. Herein, we assessed the effects of PCV10 on infant nasopharyngeal microbiome composition. Nasopharyngeal aspirates were collected from children with acute respiratory infection (ARI) aged 6-23 months. Two groups were composed of 48 vaccinated and 36 unvaccinated subjects. 16S ribosomal RNA sequencing was performed to assess bacterial composition and results were analyzed with QIIME. Similar bacterial compositions were observed in the unvaccinated and vaccinated samples. Principal component analysis also indicated a similar bacterial composition between the groups. In addition, bacterial diversity was not different between the vaccinated and unvaccinated samples. Accordingly, our results suggest that PCV10 vaccination promotes a specific response against its targets, thereby preserving the nosocomial microbiome. Although not statistically significant, Streptococcus and Haemophilus genera were increased in the vaccinated group, while Moraxella was decreased. Increases in Streptococcus may be associated with vaccine-target taxa replacement by non-pathogenic species. In sum, we observed that PCV10 vaccination acts by promoting a target-specific action against pathogenic bacteria and also induces commensal bacteria colonization without substantially changing the nasopharyngeal microbiome.


Asunto(s)
Portador Sano/microbiología , Microbiota , Nasofaringe/microbiología , Vacunas Neumococicas/administración & dosificación , Humanos , Lactante , Infecciones Neumocócicas/prevención & control , Vacunación
19.
Artículo en Inglés | MEDLINE | ID: mdl-31297344

RESUMEN

Leishmaniasis is an infectious disease caused by protozoans of the genus Leishmania. The macrophage is the resident cell in which the parasite replicates and it is important to identify new compounds that can aid in parasite elimination since the drugs used to treat leishmaniasis are toxic and present side effects. We have previously shown that treatment of Leishmania braziliensis-infected macrophages with DETC (Diethyldithiocarbamate) induces parasite killing, in vivo. Thus, the objective of this study was to further evaluate the effect of oxidants and antioxidants in L. braziliensis-infected macrophages, following treatment with either oxidizing Hydrogen Peroxide, Menadione, DETC, or antioxidant [NAC (N-Acetyl-Cyteine), Apocynin, and Tempol] compounds. We determined the percentage of infected macrophages and number of amastigotes. Promastigote survival was also evaluated. Both DETC (SOD-inhibitor) and Tempol (SOD-mimetic) decreased the percentage of infected cells and parasite load. Hydrogen peroxide did not interfere with parasite burden, while superoxide-generator Menadione had a reducing effect. On the other hand, NAC (GSH-replenisher) and Apocynin (NADPH-oxidase inhibitor) increased parasite burden. Tempol surfaces as an interesting candidate for the chemotherapy of CL with an IC50 of 0.66 ± 0.08 mM and selectivity index of 151. While it remains obscure how a SOD-mimetic may induce leishmanicidal effects, we suggest the possibility of developing Tempol-based topical applications for the treatment of cutaneous leishmaniasis caused by L. braziliensis.


Asunto(s)
Óxidos N-Cíclicos/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Superóxido Dismutasa/farmacología , Acetofenonas/farmacología , Animales , Antioxidantes , Modelos Animales de Enfermedad , Ditiocarba , Quimioterapia/métodos , Femenino , Peróxido de Hidrógeno , Concentración 50 Inhibidora , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Marcadores de Spin , Vitamina K 3/farmacología
20.
Artículo en Inglés | MEDLINE | ID: mdl-32039047

RESUMEN

In this study, we generated a transgenic strain of Leishmania braziliensis, an etiological agent associated with a diversity of clinical manifestations of leishmaniasis ranging from localized cutaneous to mucocutaneous to disseminated disease. Transgenic parasites expressing reporter proteins are valuable tools for studies of parasite biology, host-pathogen interactions, and anti-parasitic drug development. To this end, we constructed an L. braziliensis line stably expressing the reporters eGFP and luciferase (eGFP-LUC L. braziliensis). The integration cassette co-expressing the two reporters was targeted to the ribosomal locus (SSU) of the parasite genome. Transgenic parasites were characterized for their infectivity and stability both in vitro and in vivo. Parasite maintenance in axenic long-term culture in the absence of selective drugs did not alter expression of the two reporters or infection of BALB/c mice, indicating stability of the integrated cassette. Infectivity of eGFP-LUC, L. braziliensis, both in vivo and in vitro was similar to that obtained with the parental wild type strain. The possibility of L. braziliensis tracking and quantification using fluorescence and luminescence broadens the scope of research involving this neglected species, despite its importance in terms of public health concerning the leishmaniasis burden.


Asunto(s)
Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Luciferasas/análisis , Proteínas Recombinantes/análisis , Coloración y Etiquetado/métodos , Animales , Modelos Animales de Enfermedad , Inestabilidad Genómica , Proteínas Fluorescentes Verdes/genética , Leishmaniasis Cutánea/parasitología , Luciferasas/genética , Sustancias Luminiscentes/análisis , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...